
A Novel Bargaining-Based Spectrum Sharing Game in Cognitive Radio Network

Yang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing Wang

State Key Laboratory on Microwave and Digital Communications
Tsinghua National Laboratory for Information Science and Technology

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Email: {yanyang07, chenxiang98}@mails.tsinghua.edu.cn, {zhongxf, zhaoming, wangj}@tsinghua.edu.cn

Abstract—Cognitive Radio (CR) can significantly alleviate
the network pressure caused by rapid development of wireless
communication via allowing secondary users (SUs) to obtain
spectrum resources from primary users (PUs). One key issue of
CR technology is spectrum sharing, i.e., how spectrum should
be allocated between entities of a CR network without inter-
ference to PUs. In this paper, we propose a bilateral bargaining
scheme to achieve efficient and fair spectrum sharing between
two secondary users. The SUs have to reach an agreement
on the partition of a piece of spectrum resources by making
alternating offers to each other in a decentralized way. We
model such a process as dynamic finite/infinite horizon multi-
stage game with observed actions and fully characterize the
corresponding subgame perfect equilibrium (SPE). Moreover,
we analyze and compare different equilibria outcome and show
that our proposed scheme can effectively and fairly allocate
spectrum resources for SUs.

Keywords-cognitive radio technology, spectrum sharing, bar-
gaining, subgame perfect equilibrium, multi-stage game

I. INTRODUCTION

Cognitive radio technology [1] can greatly improve spec-
trum efficiency by allowing secondary unlicensed users
(SUs) to opportunistically obtain spectrum with primary
licensed users (PUs), and thus can effectively alleviate the
ever-increasing network pressure due to the rapid growth of
wireless data service. As a key component of CR technology,
efficient spectrum sharing requires that CR network access
should be coordinated to prevent multiple secondary users
colliding in overlapping portions of the spectrum [2]. In
this paper, based on the spectrum availability, we consider a
bilateral bargaining process with alternating offers between
two SUs to achieve this goal.

Spectrum sharing technique typically consists of two
types: spectrum sharing within one CR network (i.e., intra-
network spectrum sharing) and among multiple coexisting
CR networks (i.e., inter-network spectrum sharing) [2].
This paper mainly deals with the intra-network spectrum
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sharing, where SUs of a CR network try to access the
available spectrum resource without causing interference to
PUs. Some literatures focus on cooperative intra-network
spectrum sharing. Reference [3] considered a cooperative
local bargaining to provide both spectrum utilization and
fairness. Local bargaining is performed by constructing
local groups according to a poverty line that ensures a
minimum spectrum allocation to each user. Reference [4]
proposed an reinforcement-learning-based spectrum sharing
scheme. CR users are learning from the interaction among
themselves and the environment to assess the success level of
a particular action and they always choose the spectrum with
the highest weight. Reference [5] considered noncoopera-
tive intra-network spectrum sharing, where an opportunistic
spectrum management scheme was proposed. Users allocate
channels based on their observations of interference patterns
and neighbors.

In this paper, we use noncooperative bargaining theory
to realize decentralized intra-network spectrum sharing be-
tween SUs. Based on the network characteristic of equal
sharing right, we propose an alternating offers spectrum
bargaining scheme where bargainers can be the offer pro-
poser and offer responder, i.e., they have equal bargaining
positions. However, our previous work [6]–[8] considered a
cooperative spectrum sharing between PUs and SUs under
different system scenarios via a one-side noncooperative bar-
gaining mechanism. Different from our proposed scheme in
this paper, since PUs own spectrum resource, the bargaining
position for PUs and SUs are not equal: PUs have priority
over SUs during bargaining process.

The main contributions of this paper are as follows:
• New intra-network spectrum sharing bargaining model:

To the best of our knowledge, this is the first paper
that studies intra-network spectrum sharing using non-
cooperative bargaining theory. Moreover, we propose
a bilateral alternating offers bargaining model, which
better captures the reality where SUs have equal bar-
gaining powers in spectrum sharing process and has
never been discussed in previous literatures concerning
this issue.

• Finite/infinite horizon dynamics and subgame perfect
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Figure 1. Spectrum sharing bargaining model

equilibrium: We model the bargaining process into two
subcases: (i) finite horizon game where two SUs bar-
gain over the partition of spectrum during a fixed period
of time; (ii) infinite horizon game where two SUs do
not know the exact time for the bargaining to end.
We employ subgame perfect equilibrium (SPE) for the
study of the interaction between SUs in two subcases.
We fully characterize and analyze the corresponding
SPEs.

The rest of this paper is organized as follows. We intro-
duce the system model and methodology in Section II. In
Section III, we analyze the finite horizon bargaining game.
In Section IV, we extend our analysis to the infinite horizon
bargaining game. We discuss and compare the bargaining
equilibria in Section V. Finally, we conclude in Section VI.

II. SYSTEM MODEL AND METHODOLOGY

A. Spectrum Sharing Bargaining Model

We consider a simplified model shown in Figure 1.1

The dashed ellipse denotes the secondary system where
two SUs coexist, i.e., SU1 and SU2.2 Their bargaining
interaction over spectrum division is indicated by the dashed
line between them, which will be analyzed in details in
Section III and IV. We further assume that the channel model
considered in this paper is AWGN channel and the channel
gain between SUs remains fixed during bargaining process.
One primary user (PU) exists in the network and the solid
lines between SUs and PU indicate that SUs can obtain
feasible spectrum resources via proper spectrum sensing and
decision mechanism.3 We allow SUs to bargain via common
control channel (CCC) [11] so as to reach an agreement on

1For ease of illustration, we simplify this figure by not marking the
transmitters and receivers of PU and SUs.

2The two-user secondary system assumption can greatly simplify the
analysis of spectrum bargaining scheme, however, enlightened by Antoni’s
work [9]- [10], our framework can be easily extended to the general case
with multiple SUs by using certain bargaining-opponent selection schemes.

3We focus on driving the equilibrium and engineering insights for the
bargaining-based intra-network spectrum sharing. For simplicity, we do not
jointly consider the spectrum sensing and decision issues in this paper,
and will leave them as future work. All later discussions are based on the
assumption that spectrum has been available for SUs.

the spectrum division. Once any agreement is reached, SUs
work in FDMA fashion for their own transmissions.

The bargaining protocol is as follows. In the first period
(stage), SU1 proposes a division of spectrum; after observ-
ing SU1’s offer, SU2 decides whether to accept or reject
this offer; if SU2 accepts, then the proposed division is
implemented, and the game ends; otherwise, the bargaining
moves into the second stage. In the second stage, SU2 makes
a counteroffer; after observing SU2’s offer, SU1 decides
whether to accept or reject this offer; if SU1 accepts, then
the proposed division is implemented, and the game ends;
otherwise, the game moves into the third stage, and so
on. Both SUs can perfectly observe all proposed offers in
previous stages.

The bargaining process can last for a fixed period of time
(i.e., finite horizon where the number of stages is fixed),
or an unlimited period of time (i.e., infinite horizon where
SUs do not know when the game will end). Generally, in
any stage t = 1, 2, ..., N(or ∞) if no division is accepted in
prior to t, and if t is odd (even), then:
• SU1 (SU2) proposes a division
• After observing SU1’s (SU2’s) offer, SU2 (SU1) decides

whether to accept or reject this offer
• If SU2 (SU1) accepts, then the spectrum resource is

divided according to the proposal and the game ends;
otherwise, the game moves into stage t+ 1

The corresponding bargaining game trees are depicted in
Figure 2 and Figure 3, respectively.

B. Utility Functions

We assume that both SUs are rational players, who make
optimal strategies in order to maximize their own utilities
in the bargaining game. The SU’s utility is defined as its
achievable data rate:

Ui(Wi) = Wilog(1 + SNRi), ∀i ∈ N, (1)

where N = {1, 2} and Wi is spectrum resource SUi gets
in the bargaining agreement. SNRi is SUi’s signal-to-noise
ratio for a given time and location in the network. Given
spectrum resourceW which is available from PU in a certain
period, we have W1 +W2 ≤ W .

For simplicity of presentation, we modify this utility
function in Eq.(1) from two aspects. Firstly, we normalize
the spectrum resource asW = 1. Moreover, let x = (x1, x2)
with x1 + x2 = 1 denote spectrum allocation in one stage
if an agreement is reached. Secondly, with the fact that
W log(1 + SNR) is an increasing function of parameter W ,
we can equivalently replace the original utility function in
Eq.(1) with a simpler form as follows,

Ui(xi) = xi, ∀i ∈ N. (2)

Eq.(2) means that the more spectrum SU obtains, the higher
data rate it can achieve. In Section II-A, we elaborate the
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bargaining process where SU1 and SU2 are indifferent about
timing of an agreement. However, in reality the bargaining
process takes time. In this paper, we assume that SU is an
energy-constrained device (e.g., wireless sensor or mobile
device with limited battery life) and thus player’s bargaining
preference should also reflect the factor of time t. So, the
revised utility function should be Ui(xi, t). Moreover, as the
bargaining proceeds, the battery life decreases. Thus, SUs
value time and have preferences towards earlier agreements
by discounting the future utility at a rate. We can express the
utility function with the consideration of timing preference
as follows [12],

Ui(xi, t) = δtixi, ∀i ∈ N, (3)

where N = {1, 2} and δi ∈ (0, 1) is SUi’s discount factor,
which is related to SUi’s battery status and can also be
viewed as SUi’s bargaining patience. Intuitively, SU with
a larger δ tends to be more patient during the bargaining
process.

C. Subgame Perfect Equilibrium

The bargaining process elaborated in Section II-A is a
dynamic multi-stage game with observed actions, which
involves SUs’ dynamic decision-making in multiple periods
(finite or infinite horizon) and thus is challenging to ana-
lyze. In this paper, we employ a refined Nash equilibrium
(NE) concept, i.e., subgame perfect equilibrium (SPE) for
bargaining result analysis, which we define briefly by the
following:4

Definition 1: A strategy profile s∗ is a Subgame Perfect
Equilibrium (SPE) in game Γ if for any subgame Γ′ of Γ,
s∗|Γ′ is a Nash equilibrium of Γ′.
where s∗|Γ′ is the restriction of strategy profile s∗ to subgame
Γ′.

Backward Induction (BI)5 is a commonly used method
for characterize equilibrium of finite horizon dynamic game
with observed actions, which we will employ in Section III.
For the infinite horizon game, however, BI method cannot
be applied, instead we will introduce “one-stage deviation
principle” to characterize SPE in Section IV.

III. FINITE HORIZON BARGAINING GAME

In this section, we consider the finite horizon bargaining
game for spectrum sharing between SUs. For ease of illus-
tration, we focus on the two-period bargaining case. The
more general finite multi-period bargaining can be similarly
analyzed.

4The detailed definitions and discussions about NE, subgame, and other
related concepts are beyond the scope of this paper. See [13] for more
details.

5Loosely speaking, it refers to starting from the last subgame of a finite
game, then finding the best response strategy profiles or the Nash equilibria
in the subgames, then assigning these strategy profiles and the related
utilities to be subgames, and moving successively towards the beginning of
the game.
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Figure 2. Two-period bargaining game with alternating offers

Figure 2 illustrates a two-period bargaining with alternat-
ing offers, where the bargaining procedure is the same as
depicted in Section II-A. SUi’s future utility is discounted
using the constant discount factor δi ∈ (0, 1) in each period.
The available spectrum resource is normalized as W = 1.
x = (x1, x2) with x1 + x2 = 1 denotes spectrum allocation
in the first period, and y = (y1, y2) with y1 +y2 = 1 denotes
the allocation proposed by SU2 in the second period. The
sector in each proposal means that proposed offer can be any
scalar, not necessarily integral. If there is no any agreement
reached after two periods, the two players cannot divide
spectrum and thus the utility is (0, 0), i.e., no one will get
spectrum.

We will find the SPE by using BI method. We first
consider the last subgame denoted by (1) in Fig. 2, where
BI method can also be applied. There is a different possible
subgame for each value of y, so we should find the optimal
strategy of SU1: if y2 > 0, then SU1 should accept this offer;
if y2 = 0, then SU1 will be indifferent between accepting
and rejecting this offer. We further divide the case where
y2 = 0 into two contingencies:
• Accept offer for all y2 ≥ 0
• Accept offer if y2 > 0 and reject if y2 = 0

For the first possible strategy of SU1, it is obvious that SU2’s
optimal offer will maximize y1 = 1 − y2 when y2 ≥ 0.
Therefore, the optimal offer should be y = (y1, y2) = (1, 0).
Then, SU1 accepts all offers. For the second possible strat-
egy of SU1, SU2 should offer y2 > 0 so as to get positive
utility 1− y2. Thus, its optimal offer will be

y∗2 = arg max
y2>0

(1− y2). (4)

However, there is no optimal solution for Eq.(4) and hence
there is no SPE in this contingency. Therefore, the unique
SPE of subgame (1) in Fig. 2 is
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• SU2 offers 0 to SU1

• SU1 accepts all y2 ≥ 0
• Bargaining outcome: (0, 1)
Next, we track back to phases (2) and (3) in Fig. 2.

Considering the discount factor, the outcome of subgame
(1) is (0, δ2). That is, SU2 will get δ2 if it reject SU1’s
offer in phase (2). Similarly, there are two cases for SU2’s
strategies:
• Accept offer if x2 ≥ δ2 and reject if x2 < δ2
• Accept offer if x2 > δ2 and reject if x2 ≤ δ2

Combining phase (3), we can get SU1’s optimal offer in (3)
as (1− δ2, δ2). Then, the unique SPE of this game is:
• SU1’s initial proposal is (1− δ2, δ2)
• SU2 accepts all offers when x2 ≥ δ2 and rejects all
x2 < δ2

• SU2 propose (0, 1) after any case where it rejects SU1’s
offer in the first period

• SU1 accepts all proposals of SU2 (after SU2 rejects
SU1’s opening proposal)

And the outcome of this game is:
• SU1 proposes (1− δ2, δ2)
• SU2 accepts this offer
• Utility: (1− δ2, δ2)

From the unique SPE, the bargaining ends in the first
period. For the more general case with finite multiple
periods, we can similarly analyze by utilizing the backward
induction method.6

In this section, we have investigated how SUs bargain with
each other in a finite number of periods. In next section, we
extend our analysis to the infinite horizon bargaining, where
two SUs do not know exactly when the bargaining will end.

IV. INFINITE HORIZON BARGAINING GAME

We extend the bargaining game to infinite horizon where
both bargainers are unknown about the exact ending time
of bargaining.7 Figure 3 illustrates the structure of this
bargaining game. We assume that SUs get zero utility if
no agreement is reached ever.

For the infinite horizon game, BI method cannot be
applied for SPE analysis as in Section III. Therefore, we
will instead conjecture a strategy profile and then verify that
this strategy profile can form an SPE by using the one-stage
deviation principle.

A. One-stage Deviation Principle

The one-stage deviation principle is a shortcut method to
verify whether a strategy profile of a finite or infinite horizon
game is an SPE or not. In this paper, we use this principle
for analyzing the infinite horizon bargaining game. First,

6In fact, the more general case is similar to the classic Stahl’s Bargaining
Model. See [14] for more details.

7This extended model complies with the classic Rubinstein’s Alternating
Offers Model [12].
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Figure 3. Infinite horizon bargaining game with alternating offers

we introduce the concept of “history” of dynamic multi-
stage game, which helps to better understand the one-stage
deviation principle.

For period t = 1, 2, ...,∞, a t-period history ht is a record
of chosen actions from the beginning of the game up to
period (stage) t, defined as follows,

ht =
(
a1, ..., at

)
=

(
(a1

1, ..., a
1
n), ..., (at1, ..., a

t
n)
)
, (5)

where ati is player i’s action in period t. at = (at1, ..., a
t
n)

is the profile of actions in period t.
Before formally introducing the one-stage deviation prin-

ciple, we definite continuity at infinity by the following:
Definition 2: Consider a infinite horizon multi-stage

game with observed actions, denoted by Γ∞. Let h∞ denote
an ∞-horizon history, i.e., h∞ =

(
a1, a2, ...

)
, is an infinite

sequence of actions. Let ht =
(
a1, ..., at

)
be the restriction

to first t periods. The game Γ∞ is continuous at infinity if
for all players i, the utility function ui satisfies

lim
t→∞

sup
h∞,h̃∞∈H∞(ht) for some ht

∣∣∣ui(h∞)− ui(h̃∞)
∣∣∣ = 0,

where H∞(ht) is the set of infinite histories that follow ht.
With the definition of continuity at infinity, we have the

following lemma.
Lemma 1: The continuity at infinity condition is satisfied

when the overall utilities are a discounted sum of utility in
each stage, and the stage utility is uniformly bounded.
Lemma 1 shows that our infinite horizon bargaining game
with discounted utility in each stage satisfies the continuity
at infinity condition. With Lemma 1, we have the following
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theorem about one-stage deviation principle for infinite
horizon game.

Theorem 1: Consider an infinite horizon game with ob-
served actions Γ∞, that is continuous at infinity. Then, the
one-stage deviation principle holds, i.e., the strategy profile
s∗ is an SPE if and only if for all i, ht, and t, we have

ui
(
s∗i , s

∗
−i|ht

)
≤ ui

(
si, s

∗
−i|ht

)
,

for all si that satisfies si(ht) 6= s∗i (h
t) and si|ht(ht+k) =

s∗i|ht(ht+k) for all ht+k ∈ Γ∞(ht) and for all k > 0.
The proofs of Lemma 1 and Theorem 1 can be found in

[13]. If one game satisfies the one-stage deviation principle,
then it is relatively easy to verify if one strategy profile is
an SPE or not by checking if there is any history h where
some player i can increase its utility by deviating from si(h)
only once at h and conforming to si thereafter. Theorem 1
shows that the bargaining game considered in this section
satisfies the one-stage deviation principle. Next, we will use
this result to characterize SPE of the bargaining game.

B. SPE Analysis

The strategy of an SU in this game includes:
• Offer in period n
• Optimal response to its opponent’s offer in period n+1
• Counteroffer to its opponent in period n+ 2

Note that for each SU i, all subgames that begin with
SUi’s making an offer and SUi’s response to its opponent’s
offer are structurally equivalent. Therefore, we consider a
stationary strategy profile where each SU always makes
the same proposal and its response to the other SU’s offer
depends only on the current proposal.

Define the following parameters,

x∗1 =
1− δ2

1− δ1δ2
, x∗2 = 1− x∗1 =

δ2(1− δ1)

1− δ1δ2
,

and

y∗1 =
δ1(1− δ2)

1− δ1δ2
, y∗2 = 1− y∗1 =

1− δ1
1− δ1δ2

.

And we consider such a strategy profile s∗ = (s∗1, s
∗
2):

• SU1 proposes x∗ = (x∗1, x
∗
2) and accepts y1 if and only

if y1 ≥ y∗1
• SU2 proposes y∗ = (y∗1 , y

∗
2) and accepts x2 if and only

if x2 ≥ x∗2
The following theorem asserts that this strategy profile we

conjecture is an SPE of this bargaining game.
Theorem 2: The strategy profile s∗ mentioned above con-

stitutes an SPE for the infinite horizon alternating offers
bargaining game with observed actions.

Proof Sketch: We use the one-stage deviation principle
to verify this theorem. Note that there are two types of
subgame structures. The first subgame is the one where first
action is an offer provided by SUi. The second is the one

where first action is a response from SUi to an offer provided
by its opponent.

For the first type subgame, suppose that this offer is made
by SU1. Fix SU2’s strategy as s∗2. If SU1 makes actions
based on s∗1, then SU2 will accept offer and thus SU1 get
utility x∗1 = 1−δ2

1−δ1δ2 . If SU1 deviates from s∗1 and offers x2 >
x∗2, then SU2 will accept and thus SU1 gets lower utility than
x∗1. If SU1 offers x2 < x∗2, then SU2 will reject and proposes
y∗. SU1 will accept (due to one-stage deviation) and get a
discounted utility δ1y

∗
1 . Since δ1y∗1 < x∗1, SU1 will not be

better off if deviating from s∗1.
Similarly, for the second type subgame, suppose that SU1

responses SU2’s offer. Fix SU2’s strategy as s∗2, i.e., SU2

offers y∗1 . SU1 will accept and get utility y∗1 if adopting s∗1. If
not, SU1 will reject offer y1 ≥ y∗1 and propose counteroffer
x∗1 (due to one-stage deviation) and SU2 will accept offer.
SU1 will get a discounted utility δ1x

∗
1 = y∗1 , which means

it cannot gain more by such a one-stage deviation.
Thus, the strategy profile s∗ is an SPE.
From the SPE, we get the outcome of this infinite horizon

game as

• SU1 proposes
(

1−δ2
1−δ1δ2 ,

δ2(1−δ1)
1−δ1δ2

)
• SU2 accepts this offer
• Utility:

(
1−δ2

1−δ1δ2 ,
δ2(1−δ1)
1−δ1δ2

)
V. BARGAINING EQUILIBRIUM ANALYSIS

In this section, we briefly evaluate the bargaining out-
comes (SPE) derived in Section III and IV from two points
of view, i.e., fairness and efficiency.

A. Fairness

We consider the intra-network spectrum sharing in cog-
nitive radio network, where multiple secondary users want
to equally share spectrum resource obtained from PU. The
SUs have identical spectrum sharing powers, i.e., no priority
exists during spectrum bargaining process. Although there is
a conflict of interest from the two SUs, no agreement would
be imposed on any SU without its approval. Taking this fact
into account, we propose an explicit bargaining process with
alternating offers, which is consistent with the bargaining
process in reality. Any bargaining participant has fair rights
to provide a proposal as well as to response to any offer
proposed by its opponent. Both SUs in this bargaining game
must make decisions to maximize its own utility.

B. Efficiency

For both bargaining game scenarios: finite and infinite
horizon game in Section III and IV, we fully characterize
the corresponding SPE outcomes. Each bargaining ends in
the first period if SUs adopt the equilibrium strategies, i.e.,
there is no delay and thus no inefficiency due to delay in
SPE outcomes. Although we model a multi-stage bargaining
game to divide spectrum resources, the agreement can be
reached at the very beginning of the game. Under the
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situation where all actions can be perfectly observed and
all information about player’s time preference (discount
factor) is complete, each SU knows its opponent’s value
of rejecting an offer, and thus enables to find an offer
which is acceptable for its opponent and optimal for itself.
Furthermore, bargaining impatience plays an important role:
desirability of an earlier agreement yields a time-efficient
bargaining result, which can save time (and thus energy)
in spectrum sharing process and enable SUs to utilize and
vacate spectrum when PU returns back.

VI. CONCLUSION

This paper investigates an intra-network spectrum sharing
scheme achieved by a bilateral bargaining between two SUs.
The more general case with multiple SUs can be decom-
posed into several pairwise one-to-one bilateral bargaining
games studied in this paper. We discuss such a bargaining
process under two different system models, i.e., finite and
infinite horizon scenario. By modeling such a mechanism
as a multi-stage game with observed actions, we are able
to characterize the subgame perfect equilibria. Furthermore,
we analyze the properties of equilibria and verify that
such a bargaining scheme can effectively and fairly realize
spectrum sharing among SUs in cognitive radio network.
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